#author("2021-11-02T13:33:09+00:00","","")
*[[Problem 183:http://projecteuler.net/problem=183]] 「分割した積の最大値」 [#j20940d9]

Nを正整数とし, Nをk個に等分する. 即ち, r=N/kとし, N = r + r + ... + rである.
Pをその分割数の積とする. 即ち, P = r × r × ... × r = r&sup{k};.
N を正整数とし, N を &tex{k}; 個に等分する. 即ち, &tex{r};=N/&tex{k}; とし, N = &tex{r + r + ... + r}; である.
P をその分割数の積とする. 即ち, P = &tex{r}; × &tex{r}; × ... × &tex{r}; = &tex{r^{k}};.

例えば, 11を5つに分割すると, 11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2となる. このとき, P = 2.2&sup{5}; = 51.53632である.
例えば, 11 を 5 つに分割すると, 11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2 となる. このとき, P = &tex{2.2^{5}}; = 51.53632である.

M(N)=P&sub{max};とする.
M(N)=P&tex{{}_{max}};とする.

N=11の場合には4つに分けた場合がP&sub{max};=(11/4)&sup{4};で最大となる. M(11) = 14641/256 = 57.19140625であり, 有限小数である.
N=11 の場合には 4 つに分けた場合が P&tex{{}_{max}};=(11/4)&tex{{}^{4}}; で最大となる. M(11) = 14641/256 = 57.19140625であり, 有限小数である.

しかし, N=8の場合には最大値は3に分けられたときに得られ, M(8)=512/27となる. これは無限小数 (循環小数) である.
しかし, N=8 の場合には最大値は 3 に分けられたときに得られ, M(8)=512/27 となる. これは無限小数 (循環小数) である.

さて, M(N)が無限小数のときD(N)=Nに, M(N)が有限小数のときにD(N)=-Nとする.
さて, M(N) が無限小数のとき D(N)=N に, M(N) が有限小数のときに D(N)=-N とする.

5 ≦ N ≦ 100のとき, ΣD(N) = 2438となる.

5 ≦ N ≦ 10000のとき, ΣD(N) を求めよ.

IP:219.106.167.72 TIME:"2021-11-02 (火) 22:33:09" REFERER:"http://odz.sakura.ne.jp/projecteuler/index.php" USER_AGENT:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:93.0) Gecko/20100101 Firefox/93.0"

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS