#author("2022-11-03T03:00:33+00:00","","")
*[[Problem 198:http://projecteuler.net/problem=198]] 「曖昧数」 [#l0c912dd]

実数&tex(x);に対して, 分母が&tex(d);以下になるような既約分数による最も正確な近似を&tex(r/s);(&tex(s); ≤ &tex(d);, &tex(r);と&tex(s);は互いに素)とすると, &tex(r/s);より&tex(x);に近いいかなる有理数&tex(p/q);についても, &tex(q); > &tex(d);となる.

ほとんどの場合, 実数に対する最も正確な近似は, 任意の分母の上限&tex(d);に対して一意に定まる. しかし, 中には&tex(9/40);のような例外もある. &tex(9/40);は, 分母の上限が6のとき, 最も正確な近似が&tex(1/4);と&tex(1/5);の2つ定まる.
このように, 少なくとも一つの分母の上限&tex(d);に対して, 最も正確な近似が2つ以上定まる実数&tex(x);を「曖昧数」と呼ぶことにする. 明らかに, 曖昧数は有理数でなければならない.

0 < &tex(x); < 1/100 かつ &tex(q); ≤ 10&sup{8}; なる &tex(x = p/q);について, 曖昧数は全部でいくつ存在するか.
0 < &tex(x); < 1/100 かつ &tex(q); ≤ &tex{10^{8}}; なる &tex(x = p/q);について, 曖昧数は全部でいくつ存在するか.

IP:112.68.65.182 TIME:"2022-11-03 (木) 12:00:33" REFERER:"http://odz.sakura.ne.jp/projecteuler/" USER_AGENT:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36"

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS