Problem 126 「直方体層」

3 x 2 x 1 の直方体の表面全てを覆いつくすのに必要最小限の立方体の数は 22 個である.

p126.png

さらにこの立体に表面を覆いつくすように2層目を追加すると, 46 個の立方体が必要である. 3層目は 78 個, 4層目は 118 個の立方体が表面を覆いつくすのに必要である.

ところで 5 x 1 x 1 の直方体への1層目も 22 個の立方体が必要である. 同様に 5 x 3 x 1, 7 x 2 x 1, 11 x 1 x 1 の直方体への1層目も全て 46 個の立方体である.

何層目かが n 個の立方体からなる直方体の数を, C(n) と定義する. C(22) = 2, C(46) = 4, C(78) = 5, C(118) = 8 となる.

154 は C(n) = 10 を満たす最小の n であることがわかる.

C(n)=1000 を満たす最小の n を求めよ.


トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS