ディオファントス方程式 1/a + 1/b = p/10n (a, b, p, n は正の整数で, a ≤ b) について考える.
n = 1 について, この方程式は以下に挙げられる20個の解を持つ.
&sup{1};/&sub{1};+&sup{1};/&sub{1};=&sup{20};/&sub{10}; | &sup{1};/&sub{1};+&sup{1};/&sub{2};=&sup{15};/&sub{10}; | &sup{1};/&sub{1};+&sup{1};/&sub{5};=&sup{12};/&sub{10}; | &sup{1};/&sub{1};+&sup{1};/&sub{10};=&sup{11};/&sub{10}; | &sup{1};/&sub{2};+&sup{1};/&sub{2};=&sup{10};/&sub{10}; |
&sup{1};/&sub{2};+&sup{1};/&sub{5};=&sup{7};/&sub{10}; | &sup{1};/&sub{2};+&sup{1};/&sub{10};=&sup{6};/&sub{10}; | &sup{1};/&sub{3};+&sup{1};/&sub{6};=&sup{5};/&sub{10}; | &sup{1};/&sub{3};+&sup{1};/&sub{15};=&sup{4};/&sub{10}; | &sup{1};/&sub{4};+&sup{1};/&sub{4};=&sup{5};/&sub{10}; |
&sup{1};/&sub{4};+&sup{1};/&sub{20};=&sup{3};/&sub{10}; | &sup{1};/&sub{5};+&sup{1};/&sub{5};=&sup{4};/&sub{10}; | &sup{1};/&sub{5};+&sup{1};/&sub{10};=&sup{3};/&sub{10}; | &sup{1};/&sub{6};+&sup{1};/&sub{30};=&sup{2};/&sub{10}; | &sup{1};/&sub{10};+&sup{1};/&sub{10};=&sup{2};/&sub{10}; |
&sup{1};/&sub{11};+&sup{1};/&sub{110};=&sup{1};/&sub{10}; | &sup{1};/&sub{12};+&sup{1};/&sub{60};=&sup{1};/&sub{10}; | &sup{1};/&sub{14};+&sup{1};/&sub{35};=&sup{1};/&sub{10}; | &sup{1};/&sub{15};+&sup{1};/&sub{30};=&sup{1};/&sub{10}; | &sup{1};/&sub{20};+&sup{1};/&sub{20};=&sup{1};/&sub{10}; |
1 ≤ n ≤ 9 について, この方程式の解はいくつ存在するか?