#author("2024-05-15T03:18:28+00:00","","")
*[[Problem 274:http://projecteuler.net/problem=274]] 「整除乗数」 [#wd4b6d12]

10 と互いに素な整数 p > 1 に対し, 次のような性質がある正の整除乗数(divisibility multiplier) m < p が存在する: 任意の正の整数 n に対し次の関数と p で割り切れるかどうかが同じである:

f(n) = (n の最後の桁以外) + (n の最後の桁) * m

つまり, もし m が p の整除乗数であるなら, f(n) が p で割り切れる必要十分条件は n が p で割り切れることである.

(n が p より十分大きければ, f(n) は n より小さくなり, f を繰り返し適用することで p の整除乗数のテストに使用できる)

例えば, 113 の整除乗数は 34 である.

f(76275) = 7627 + 5 * 34 = 7797 : 76275 と 7797 は共に 113 で割り切れる. ~
f(12345) = 1234 + 5 * 34 = 1404 : 12345 と 1404 は共に 113 で割り切れない.

1000 未満で 10 と互いに素な素数の整除乗数の合計は 39517 である. 10&sup{7}; 未満で10 と互いに素な素数の整除乗数の合計は?
1000 未満で 10 と互いに素な素数の整除乗数の合計は 39517 である. &tex{10^{7}}; 未満で10 と互いに素な素数の整除乗数の合計は?

IP:121.80.134.87 TIME:"2024-05-15 (水) 12:18:28" REFERER:"https://odz.sakura.ne.jp/projecteuler/" USER_AGENT:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36"

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS