#author("2023-02-18T01:31:15+00:00","","")
*[[Problem 143:http://projecteuler.net/problem=143]] 「三角形のトリチェリ点の調べ上げ」 [#o326a9ac]

ABCを全ての内角が120度未満の三角形とする. Xを三角形の内点とし, XA = p, XC = q, XB = rとする.
ABCを全ての内角が120度未満の三角形とする. 三角形の内側の点Xに対して, XA = p, XC = q, XB = rとする.

フェルマーは「p+q+rを最小にするXを探す方法はあるか?」とトリチェリに問題を出した.
フェルマーは「p+q+rを最小にするXを求めよ」とトリチェリに問題を出した.

正三角形 AOB, BNC, AMC がABCの各辺に構成できるならば, AOB, BNC, AMCに外接する3つの円が三角形の内部の1点 T で交わることをトリチェリは示した. さらに, トリチェリ-フェルマー点と呼ばれる T が, p + q + r を最小化することも示した. 更には, 和が最小となるときには, AN = BM = CO = p + q + r であり, AN, BM, COもまた T と交わることも示せる.
トリチェリは, 三角形ABCの各辺に正三角形 AOB, BNC, AMC を作ると, AOB, BNC, AMCに外接する3つの円が三角形の内部の1点 T で交わることを示した. さらに, トリチェリ-フェルマー点と呼ばれる点 T が, p + q + r を最小化することも示した. 更には, 和が最小となるときには, AN = BM = CO = p + q + r であり, AN, BM, COも点Tで交わることも示せる.

#ref(http://projecteuler.net/project/images/p143_torricelli.png,center,nolink);

和が最小化されているとして, a, b, c, p, q, r が全て正の整数であるとき, 三角形 ABC をトリチェリ三角形と呼ぶ. 例えば, a = 399, b = 455, c = 511 は p + q + r = 784 のトリチェリ三角形である. 

トリチェリ三角形について 異なる値をとる p + q + r ≤ 120000 の総和を求めよ.

注: この問題は最近変更された. 正しいパラメータを用いているかどうかチェックしてほしい.

IP:121.80.135.15 TIME:"2023-02-18 (土) 10:31:15" REFERER:"http://odz.sakura.ne.jp/projecteuler/" USER_AGENT:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36"

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS