#author("2021-10-26T02:59:21+00:00","","") #author("2021-10-26T04:17:50+00:00","","") *[[Problem 149:http://projecteuler.net/problem=149]] 「和が最大となる部分列の探索」 [#q0ee6343] 下の表において, 任意の方向(縦横斜め)に隣り合うものの和の最大値は 16 (= 8 + 7 + 1) となることは簡単に確かめられる. |-2|5|3|2| |9|-6|5|1| |3|2|7|3| |-1|8|-4|8| いま, 同じ探索をより大きなものについてもしてみることにする. まず, 400万個の擬似乱数を "Lagged Fibonacci Generator" によって生成する. 1 ≤ &tex{k}; ≤ 55 について, &tex{s_{k} = [100003 - 200003k + 300007k^{3}] (modulo 1000000) - 500000}; ~ 56 ≤ &tex{k}; ≤ 4000000 について, &tex{s_{k} = [s_{k-24} + s_{k-55} + 1000000] (modulo 1000000) - 500000}; つまり, &tex{s_{10} = -393027 , s_{100} = 86613}; となる. &tex{s}; の項は, 最初の 2000 個を最初の行に(順番に), 次の 2000 個を 2 番目の行に, というように, 2000x2000 の表に並べ替えられる. 任意の方向(縦横斜め)に隣り合うものの和の最大値を求めよ. %%(連続して足す領域は 3 マス以上でもよい, 斜め 4 マス等も認める)%% (連続して足す領域は 3 マス以上でもよい, 斜め 4 マス等も認める) IP:183.176.112.9 TIME:"2021-10-26 (火) 13:17:50" REFERER:"http://odz.sakura.ne.jp/projecteuler/index.php" USER_AGENT:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:93.0) Gecko/20100101 Firefox/93.0"