6面のサイコロ(各面は 1 から 6)を 5 個振って, 上位 3 個の合計が 15 となる場合は 1111 通りある. いくつか例を挙げる:
D1,D2,D3,D4,D5 = 4,3,6,3,5 D1,D2,D3,D4,D5 = 4,3,3,5,6 D1,D2,D3,D4,D5 = 3,3,3,6,6 D1,D2,D3,D4,D5 = 6,6,3,3,3
12面のサイコロ(各面は 1 から 12)を 20 個振って, 上位 10 個の合計が 70 となる場合は何通りあるか.
合計:1190 今日:1 昨日:1