*[[Problem 462:https://projecteuler.net/problem=462]] 「3-スムーズ数の順列」 [#beb03a23]
3-スムーズ数とは, 3以上の素因数を持たない整数のことである. ある整数 '''N''' に 対し, '''N''' と等しいかそれ以下の 3-スムーズ数からなる集合を S('''N''') を定義する. 例えば, S(20) = { 1, 2, 3, 4, 6, 8, 9, 12, 16, 18 }.
それぞれの要素が, その要素の真約数の後ろに並ぶように作られた S('''N''') からなる順列の場合の数を F('''N''') と定義する.
これは '''N''' = 20 の場合の順列の一つの例である.~
>>1, 2, 4, 3, 9, 8, 16, 6, 18, 12.
これは妥当な順列ではない, なぜなら 12 がその約数の 6 の前に来ているからである.~
>>1, 2, 4, 3, 9, 8, ''12'', 16, ''6'', 18.
F(6) = 5, F(8) = 9, F(20) = 450, そして F(1000) ≈ 8.8521816557e21 であることを確かめることができる.~
F(10&sup{18};) を求めよ. 回答を小数点以下10桁の有効桁に四捨五入した科学的記数法で答えよ.~
回答の際, 仮数部と指数部のセパレーターに小文字のeを使うこと. 例えば, 答えが 112,233,445,566,778,899 の場合, 回答の形式では 1.1223344557e17 となる.