二項係数nCkは三角形の形に並べることができる. すなわちパスカルの三角形である. 以下を見よ.
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 ....
上から8行見るとパスカルの三角形は12個の異なる数を含む. 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21, 35である.
任意の素数の二乗がnを割り切らないとき, 正整数nが平方因子を持たないと言う. 先ほどの12個の数字を見ると, 4, 20以外は平方因子を持たない. 従って, 最初の8行の平方因子を持たない異なる数の和は105になる.
パスカルの三角形の最初の51行に含まれる平方因子を持たない異なる数の和を答えよ.