Problem 479
の編集
http://odz.sakura.ne.jp/projecteuler/index.php?Problem+479
[
トップ
] [
編集
|
差分
|
バックアップ
|
添付
|
リロード
] [
新規
|
一覧
|
検索
|
最終更新
|
ヘルプ
]
-- 雛形とするページ --
(no template pages)
*[[Problem 479:http://projecteuler.net/problem=479]] 「増加する根」 [#daa85127] 式 1/'''x''' = ('''k'''/'''x''')&sup{2};('''k'''+'''x'''&sup{2};) - '''kx''' の3つの解(実数か複素数)を '''a'''&sub{'''k'''};, '''b'''&sub{'''k'''};, '''c'''&sub{'''k'''}; で表すとしよう. 例えば. '''k''' = 5 の場合, {'''a'''&sub{5};, '''b'''&sub{5};, '''c'''&sub{5};} はおよそ {5.727244, -0.363622+2.057397i, -0.363622-2.057397i} となる. 1 ≤ '''p''', '''k''' ≤ '''n''' となるようなすべての整数 '''p''', '''k''' に対し S('''n''') = Σ ('''a'''&sub{'''k'''};+'''b'''&sub{'''k'''};)&sup{'''p'''};('''b'''&sub{'''k'''};+'''c'''&sub{'''k'''};)&sup{'''p'''};('''c'''&sub{'''k'''};+'''a'''&sub{'''k'''};)&sup{'''p'''}; としよう. 面白いことに, S('''n''') は常に整数となる. 例えば, S(4) = 51160. S(10&sup{6};) modulo 1 000 000 007 を求めよ.
タイムスタンプを変更しない
*[[Problem 479:http://projecteuler.net/problem=479]] 「増加する根」 [#daa85127] 式 1/'''x''' = ('''k'''/'''x''')&sup{2};('''k'''+'''x'''&sup{2};) - '''kx''' の3つの解(実数か複素数)を '''a'''&sub{'''k'''};, '''b'''&sub{'''k'''};, '''c'''&sub{'''k'''}; で表すとしよう. 例えば. '''k''' = 5 の場合, {'''a'''&sub{5};, '''b'''&sub{5};, '''c'''&sub{5};} はおよそ {5.727244, -0.363622+2.057397i, -0.363622-2.057397i} となる. 1 ≤ '''p''', '''k''' ≤ '''n''' となるようなすべての整数 '''p''', '''k''' に対し S('''n''') = Σ ('''a'''&sub{'''k'''};+'''b'''&sub{'''k'''};)&sup{'''p'''};('''b'''&sub{'''k'''};+'''c'''&sub{'''k'''};)&sup{'''p'''};('''c'''&sub{'''k'''};+'''a'''&sub{'''k'''};)&sup{'''p'''}; としよう. 面白いことに, S('''n''') は常に整数となる. 例えば, S(4) = 51160. S(10&sup{6};) modulo 1 000 000 007 を求めよ.
テキスト整形のルールを表示する